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Hyperbolic Secant Coupling in
Overmoded Waveguide

J. L. DOANE, MEMBER, IEEE

Abstract —This work presents a new solution of the coupled-mode
equations for a hyperbolic secant spatial variation of the coupling between
two modes. An analytic expression is given for the transmission coefficient
for arbitrary complex differential propagation constant and coupling
strength. The expression is particulary simple in the case when the dif-
ferential attenuation between the modes is negligible.

Design curves are presented in terms of normalized parameters. The
hyperbolic secant coupling may be truncated and still yield virtually the
same transmission as for infinite couping length. The required coupling
length is indicated by a comparison of the ideal expression with the results
of numerical integration of the coupled-mode equations.

Hyperbolic secant coupling can be particularly useful for the design of
short low-loss broad-band bends, twists, and mode-selective couplers in
overmoded waveguide. Results of tests on 90-degree bends in rectangular
and corrugated circular waveguide are consistent with the theory.

I. INTRODUCTION

LTHOUGH the coupled-wave equations have a de-

ceptively simple form, few analytical solutions have
been found. A simple solution for arbitrary coupling varia-
tion exists when reflections may be neglected and when the
two coupled modes are degenerate (that is, have the same
propagation constants) [1]. When reflections are negligible
and the coupling is constant, Miller [2] and Smith [3] have
derived solutions for the case of constant and linearly
tapered differences in propagation factors, respectively.
For the case of arbitrary coupling variation and constant
difference in propagation factors, Rowe [1] has used per-
turbation theory to derive solutions in the form of Fourier
integrals, and Waldron [4] has developed solutions for
slowly varying coupling based on Miller’s constant cou-
pling solution [2]. Miller’s solution [2] has also been used as
a basis for treating periodic coupling [5], [6] and random
coupling [7].

In waveguide tapers, the coupling and propagation fac-
tors vary simultaneously. Solymar [8], [9] has developed
estimates for the mode conversion in tapers with a linear
profile, Unger [10] has developed a synthesis technique for
broad-band tapers with low mode conversion using per-
turbation theory, and other approaches are described by
Sporleder and Unger [11]. The case of a parabolic taper
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profile was treated in [12], and analytical solutions for this
case were derived in [11] and [13].

Reflections have been considered in solutions for wave-
guides and transmission lines in which the coupled modes
are not far from cutoff or the impedance is varying signifi-
cantly. Solutions for these cases, and where forward mode
conversion is impossible or unimportant, have been ob-
tained by Hecken [14] (and earlier references cited therein)
and Waldron [15] using formalisms similar to those in [10]
and [4], respectively. A solution for both mode conversion
and reflections in a coupler with degenerate modes and
coupling with a Gaussian variation is described in [16].

This work presents a new analytic expression for the
transmission coefficient for the amplitude of a mode ini-
tially having all the power and whose coupling with another
mode has a hyperbolic secant variation. This expression is
valid for arbitrary constant differential phase and attenua-
tion factors when reflections are negligible. It reduces in
the limit of small coupling to expressions derivable from
perturbation theory for the same coupling variation, and in
general predicts higher transmission (less mode conversion)
than the perturbation theoretical expressions. In the case of
negligible differential attenuation between modes, the exact
expression for the power lost from the initial mode is
separable into a product of the power that would be lost
with zero differential phase constant and the square of a
hyperbolic secant function of the differential phase con-
stant.

Aside from its theoretical interest as a new analytic
solution, the solution for hyperbolic secant coupling varia-
tion can be used to-design short low-loss bends and twists
in overmoded waveguide. Since the mode conversion is a
monotonic function of the differential phase constant when
the differential attenuation is negligible, the design of
components with hyperbolic secant coupling is relatively
simple. When a relatively broad-band component is re-
quired, the hyperbolic secant coupling variation also fre-
quently provides lower mode conversion for a given length
than other common coupling variations (constant coupling,
linearly tapered or triangular coupling, cosine coupling,
ete).

In the next section, we set up the coupled-wave equa-
tions describing the problem. The properties of the solu-
tion, derived in the Appendix, are discussed in Section III.
Finally, Section IV presents some theoretical and experi-
mental results for two examples of 90-degree bends in
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overmoded waveguide with a hyperbolic secant curvature
variation: one for TE,, in rectangular waveguide, and
another for HE,; in corrugated circular waveguide.

II. THE COUPLED-MODE EQUATIONS

The coupled-mode equations for modes propagating
along the waveguide axis ( z-direction) are [17], [18]

L (==L ()+ T Kl (z
n+m
+ Z Krtmln
n#*m
FI () =+ T ()+ T Kl (2
dz n#m
+ X K1 (z2) (1)
n+m
where I} and I, are the complex amplitudes of the

forward and reverse traveling modes, respectively. These
equations may be derived from Maxwell’s equations and
are exact, provided that the propagation factors I, = a,,, +
JB,, are independent of z [19]. (The T, are functions of z in
tapers, for example, where the size of the cross section is
changing with z.)

Furthermore, in many cases of interest, the desired mode
of propagation (1) is far from cutoff. The only significant
coupling is to modes that are also far from cutoff, and
hence have propagation constants close to that of I,. For
such modes, the coupling coefficients K}, and K, are
negligible [19], so that reflected power is not important.
(The coefficients may not be negligible for coupling to
modes close to cutoff, but then their phase constants S, are
much different from B, and no significant coupling occurs
unless there is a strong discontinuity in the coupling.)

Neglecting reflected modes in (1), therefore, and consid-
ering only two modes at a time

I§(2) = =Toly(2)+ Koy I (z)

I{(z) = - T11(2)+ Ky Iy(2) 2)
where the prime denotes differentiation with respect to z,
and we have dropped the + superscripts. In order to have
power conservation when the attenuation constants «, and
a, are negligible, then, for modes traveling in the same
direction, we must have

Kio=—Kgi- (3)

Ordinarily, the coupling factors K, can be factored into
the product of a coupling coefficient K derivable from
Maxwell’s equations and a geometric distortion function
¢(z) such as curvature, for example. If the distortion were
abnormally large, such as in bends with extremely large
curvature, then terms that are nonlinear in ¢(z) would also
have to be included in K;,. The simple linear term, how-
ever, seems to be adequate to account for the data in all
practical cases, in which the mode conversion is purposely
small.

To simplify the form of (2) to concentrate on mode
conversion effects, we factor out the propagation factors of
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Fig. 1. Hyperbolic secant coupling,

the uncoupled modes in ideal waveguide
Iy =exp(—T,z)G,
I =exp(-T,2)G, 4)
and then (2) becomes
Gi(z) = Ke(z)e*™G,(z2)
Gi(z)=—K*c(z)e *T"Gy(z)

(52)
(5b)
where |

AT =Aa+ jAR = (ag—a)+ j( B8y — B;) (6)

and, as discussed in the preceding paragraph
K01=KC(Z)- (7

In the case of curvature, K is imaginary [19] and z is the
arc length along the waveguide centerline.
Now, we take ¢(z) to have the special form

c(z)=Ry'sech(kz/2) (8)

with z=0 at the center of the coupling region where
c(0)=Ry'. A plot of the hyperbolic secant function
sech(kz /2) is presented in Fig. 1. To solve (5) with ¢(z) as
in (8), we first differentiate (5a), substitute (5b) for G{, and
use (5a) itself to write G; in terms of G, to obtain

Gy - [CC((ZZ)) + AI‘]G(; +|K|%X(2)Gy=0.  (9)

This equation can be used with the coupling function ¢(z)
in (8), since ¢(z) in (8) is never exactly zero. Substituting
(8) into (9), we obtain

1

Gy — (f‘— tanh -k—

5 AI‘)GO

+(1K2/Ry) sechz( )GO —0. (10)
A similar equation may be obtained for G; by changing

the sign of AT. The soluuon to (10) is developed in the
Appendix.
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III. DISCUSSION OF SOLUTION

A. General

In discussing the solution obtained in the Appendix, it is
convenient to introduce the following dimensionless quan-
tities related to the differential attenuation, propagation
constant, and the coupling, respectively:

A= —AaRy0/27 (11a)
B=ABR0/ 27 (11b)
C=|K|0/x. (11c)
Here, we have also defined
05f+wc(z)dz=27r/(kR0) (12)

making use of (8).

In the case where c(z) represents the curvature in a
bend, 6 in (32) is simply the total bend angle, and R, from
(8) is the radius of curvature at the center of the bend
z = 0. In the general case, define

1/R(z)=c(z)=(d8/dz) = (1/R,)sech(7z/(R,0))
(13)
using (8) and (12), where
1/R,=(d0/dz),_,. (14)

The case of a twist of total angle ¢ in rectangular wave-
guide, for example, can easily be treated with this notation.
In that case, 1/R(z) is the torsion of the twist.

For convenience, we repeat here the expression for the
transmission coefficient T derived in the Appendix (A23).
I'(x) is the gamma (factorial) function of the complex
argument x [20].

I'2(1/2+ A— jB)

= Ta,2% 4~ jB+O)T(1/2+ A—jB-C)" (15)

In the case of zero differential attenuation (Aa=0= A4),

a simple exact expression can be found from (15) for the

transmited power |T|>. Write |T|>=T*T, note that
I'*(x*)=TI(x) for an complex x, and use the identity

I‘(—;—+x)l‘(%—x)=7r/coswx. (16)

Expanding the resulting products of cosines using ordinary
trigonometric identities, we find that the result separates
into factors containing B alone and C alone

1-|T|* =sin* (7C)/cosh’ (7B), Aa=0. (17)

Identifying |T'| = |Gy(+ o0)| from (A18) and using the fact
that

|G| +1Gy2 =1, Aa=0 (18)
which follows easily from (5), we see that
|Gy (+00)|* =1— T2, (19)

Hence, (17) represents the power coupled from G, to G;.

The behavior of the transmitted power |T|? is depicted
in Fig. 2 as a function of C for various B. Notice from (17)
that |T'| is periodic in C, with unity period. In the case of
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Fig. 2. Transmitted power as a function of the normalized total cou-
pling C when Aa=0.

T T T T T T T T
10 +—C=0o0rl
0lor09 |
08 .
N _
L;()6_020!08 —
o _
e L
04+ 030r07 _
B 040r06 7
02+
\0‘5
0 1 I 1 ] ! ] ] 1 1
0 0.2 04 06 08 1.0

B

Fig. 3. Transmitted power as a function of the normalized propagation
constant when Aa= 0.

degenerate modes, (A = 0 = B), (17) becomes
1-|T|*=sin? (#C), Aa,AB=0. (20)

This result can be obtained directly from the coupled-wave
equations (5) using definition (11c) for C, and holds for
arbitrary coupling c¢(z). The interesting feature of (17) is
that the factor (20) remains intact, and the denominator is
independent of C. This result contrasts with the solution in
the case of constant coupling [2], where a factor containing
B alone cannot be separated out, in general.

In the present case, progressively increasing B from 0
monotonically decreases the amount of power coupled to
G,. Fig. 3 shows that, when B reaches unity or more, very
little power is coupled to G;, and the transmitted power
|T'|? is virtually unity, regardless of C.

Mode-selective couplers may be used to couple power
from a certain mode in one waveguide through holes or
slots to a mode in another waveguide. Ordinarily, these
modes have the same propagation constant, so that A =0
and (20) may be used to calculate the coupled power. If
one or both coupled waveguides is overmoded, coupling to
or from an undesired mode with nonzero AB can be
calculated from (17), provided the coupling variation fol-
lows the hyperbolic secant form defined in (13). This
coupling variation can be useful when a broad-band mode-
selective coupler must be designed.
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B. Comparison with Perturbation Theory

When C/B=2|K|/(ABR,) is small and A=0, per-
turbation theory may be used to find an estimate for |T'}>.
Small C/B is equivalent to a small amount of coupling in
one beat-wavelength 27/AB. The perturbation solution for
arbitrary c(z) is [19]

+ ] 2
f ooe_fA’gZIch(z) dz| ,
e _
which in the present case becomes, using (8) and (11)

—|T)2 = (7C)*/cost® (zB),  Aa=0.

Notice that this, in general, overestimates the power cou-
pled to G,, but reduces to the exact result (17) when

=|K|0/7 is small. For comparison, the corresponding
coupled power in a bend of constant radius R, when
C < B, using (11b) to define B, is 2]

—|T)? = (7C)*[sin(7B) /(=B)]".

—|T)2= Aa=0 (21)

(23)

C. Added Heat Loss

“No simple trigonometric formula can be derived for |T|?
in the general case when A =0, but Aa # 0. The curves in
Fig. 4 were calculated directly from (15) using a computer
program for numerical evaluation of the gamma functions
[21]. These results were checked against simple formulas
which can be derived for the cases 4= 0.5 and 1.0 using
(16). Notice that, for small total coupling C, increasing 4
from zero increases the transmitted power by breaking the
degeneracy AI'=( between the two modes in a manner

similar to Fig. 2. For large ‘C, however, the power never.
returns competely to G, because of the large damping in

the coupled mode G.

In most practical cases, the d1fferent1a1 attenuation is
small, and its effect is a small correction to |T|%. In such
cases, it is convenient to define an “added heat loss”
(A.H.L) as

7(0, B,C)

T(4, B,C) (24)

AHL. = ln‘

where the transmission coefficient T is considered as a
function of the three normalized parameters of (11).

When - B is large and both 4 and C are small, an
estimate of A.H.L. can be obtained by expanding the
gamma functions in (15) using Stirling’s approx1mat10n
The result is

AHL. = A(C/B)

This result agrees with the following formula for A.H.L.
that can be derived from perturbation theory [22], whenever
the loss considered as a function of B is maximum near
B =0 and is small for all |B| greater than some reasonably
small fraction of the actual B

HL.=

Moo e () de (26)

(4B)° |
Equation (25) can be obtained by performing the integra-
tion in (26) using (8) and the definition of (11).

(22)

(25)
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Fig. 5. Ratio of the added heat loss (A.H.L.) to the normalized differen-
tial attenuation constant A, as calculated by the exact formula (24) and
by perturbation theory (25) for 4 = 0.0025,
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Fig. 6. ‘Ratio of A H.L. to A4 as a function of B for various C and 4.

A comparison between the approximate expression (25)
for A.H.L. and the exact expression (24) evaluated numeri-
cally is depicted in Fig. 5 for relatively small coupling C.
As in ‘the case of zero Aa, the perturbation results again
overestimate the loss, but reduce to the exact result for
small (C/B)%. ‘

Fig. 6 reproduces the exact results of Fig. 5 and com-
pares these with additional results for larger C and 4.
Notice that the value of 4 does not affect the added heat
loss to A ratio when C is an integer. From (17), it can be
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seen that this corresponds to the case of zero transmission
loss for arbitrary B when A =10. When C takes on half-
integral values, on the other hand, the loss from (17) is
maximum. In this case, increasing A4 for very small B
tends to decrease the degeneracy between modes and also
to decrease the transmission loss (see the discussion of Fig.
4). In such cases, the “added heat loss” can even become
negative for larger A, as Fig. 6 shows.

D. Truncation of the Coupling

In practice, it is of course necessary to truncate the
hyperbolic secant coupling function c(z) at some finite
length. To achieve the same total coupling (which would be
the bend angle for curvature coupling, for example), it is
necessary to scale the value of @ used in the coupling
function (13). If we define L as the total coupling length,
and 6, as the scaled coupling parameter, then we require
that

+
[ Tez)de= o [ scoh(nz/R0,)dz=0. (27)
-0 0Y—-L/2
Evaluation of the integral in (27) yields an implicit expres-
sion for 0,

When L/(R0,) is large, which is usually required for low
loss, we may expand the functions in (28) in terms of
simple exponentials. Expanding the result about 6, = @, we
find

(20, /=) arctan (sinh 7 L) =40.

b, _ 1
6" 1—1/(Eex—x) *)
4
where
7 L
x=z R (30)

Fig. 7 contains a plot of (29) compared with the exact
result obtained numerically for the case 6 = 7/2. When
L/R,> 2.5, which is usually required in practice for low
loss, the approximate expression is very good.

In Figs. 8 and 9, we provide a basis for choosing the
truncated coupling length L. These figures show the situa-
tion for § =7/2, and A=0, B=0.5, and |C/B|=35 or 6.
For both integral and half-integral C, which correspond to
minimum and maximum loss at L — oo, respectively, L/R,
must reach about 6 before the loss (coupled power) with
truncated coupling approaches the loss for infinite cou-
pling (with no truncation). The actual loss in these figures
was calculated numerically from the coupled-mode equa-
tions assuming a sharp truncation in the coupling, so that
c(z) is given by (8) for |z|< L/2, and ¢(z)=0 for |z|>
L /2. The straight lines in the figures were calculated from
a7.

The actual value of (L/Ryf) required for satisfactory
results depends on the ratio |C/B|. For small values of this
ratio, the coupling at the truncation points z=+ L/2 is
small and does not strongly affect the overall loss. Hence,
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Fig. 7. Approximate (29) and exact ratios of the scaled and desired
angles , and @ as a function of the normalized coupling length.
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Fig. 8. Transmitted power versus normalized coupling length for 6 =
7/2, A=0, B=05, and C=25. The straight line is the value for
infinite coupling length obtained from (17).
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Fig. 9. Transmitted power versus normalized coupling length for 8 =
7/2, A=0, B=0.5, and C=3.0. The straight line is the value ob-
tained from (17).

L/(Ryf0) can be decreased to make a shorter coupling
section. For larger |C/B|, the coupling c¢(z) must be re-
duced to a small value before truncation, and this implies
larger L/(Ry0).

If the truncation is not abrupt, on the other hand, the
hyperbolic secant coupling length may be reduced slightly.
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In general, the strength of the coupling between modes at
the truncation region is roughly inversely proportional to
the order of the lowest order derivative in the coupling
function that is discontinuous. That is, a parabolic taper to
zero in c¢(z) for |z|> L/2 is better than a linear taper,
which in turn is better than an abrupt truncation. Integra-
tion by parts of the integral in the perturbation solution
(21) quickly shows this to be true, provided that the length
of the taper exceeds a beat-wavelength 27/AB. In physi-
cally practical situations involving hyperbolic secant cou-
pling such as in bends or twists, a gradual truncation is
actually more natural than an abrupt one.

IV. APPLICATION TO THE DESIGN OF BENDS

A. Rectangular Waveguide

Overmoded rectangular waveguides are commonly used
for the propagation of low-level signals over several meters
at millimeter wavelengths, because the losses are lower
than in dominant-mode waveguide and because the TE,,
mode can easily be launched in the larger overmoded
waveguide by a taper. To negotiate bends in the H-plane, a
quasi-optical miter bend is vsually fairly satisfactory, with
mode conversion proportional to (a/A) /%, where a is
the length of the wall perpendicular to the E-field [23], {24].
For example, at 140 GHz in WR28 waveguide (0.280 X
0.140 in), the mode conversion in an H-plane 90-degree
miter is only 0.3 dB. An E-plane miter, however, would
have 1.5 dB of mode conversion loss under these condi-
tions, and the loss varies only as (b/A) ™/, where b is the
length of the wall parallel to E [23], [24].

As an alternative to the E-plane miter, a gradual E-plane
bend with hyperbolic secant curvature variation was con-
sidered. The coupling is from TE;, to the TE,/TM;
degenerate pair. The total coupling coefficient is given in
[25]; when TE,, /TM,, is well above cutoff, K = j(4y2 /7)
(b/A) [24]. This coupling coefficient is about the same as
for TE,, to TE,, coupling in H-plane bends K = j(32/97)
(a /). Fortunately, however, the total mode conversion in
gradual E-plane bends is smaller than in corresponding
H-plane bends because the AS for the former is larger.

The mode conversion loss in a 6-in E-plane bend in
WR28 is shown in Fig. 10. In accordance with the theory,
the mode conversion measured at 140 GHz was less than
the experimental error, about 0.1 dB. The mode conversion
predicted by (17) differs from the result of numerical
integration in Fig. 10 at the higher frequencies due to the
truncation of the hyperbolic secant curvature at L/Ry=x
=4 [see (29)], and the fact that the coupling factor C in
(11c¢) increases to 3.15 at 300 GHz, while B in (11b) drops
to 0.6. Figs. 8 and 9 indicate the discrepancy for similar
conditions. In any case, the mode conversion loss for the
truncated hyperbolic secant curvature is generally less than
that for the a linearly tapered, or triangular, curvature
variation suggested in [26]. Not shown in Fig. 10 are the
loss for a cosine curvature variation (with zero curvature at
both bend ends) [25], almost identical to that of the trian-
gular curvature, and the loss for constant curvature [2],
which has nulls at certain frequencies but generally has the
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Fig. 10. Losses in 90-degree E-plane bends propagating TE;, in WR28
(0.2800.140 in) rectangular waveguide with 6-in arc length. (a) Loss
to TE;; /TMy, with hyperbolic secant curvature calculated from (15) or
(17); (b) Same as (a), but calculated from numerical integration of the
coupled wave equations (5) with the curvature truncated at L/Ry = 4;
(c) Loss calculated for a triangular curvature variation from numerical
integration of (5).
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Fig. 11. Propagation constants relative to TEy; in 1.094-in 1.D. corru-
gated circular waveguide as a function of effective slot depth at 60 GHz.

highest mode conversion. The ohmic loss for ideal copper
conductivity in the 6-in bend increases from 0.09 dB at 100
GHz to 0.13 dB at 300 GHz for the TE,, mode. The effect
of the differential attenuation Aa on the mode conversion
is negligible in this case, since a direct computation of (15)
showed virtually no difference from (17).

B. Corrugated Circular Waveguide

For very low-loss and high-power transmission at milli-
meter wavelengths, it is necessary to use highly overmoded
circular waveguide. Corrugated circular waveguides are
particulary convenient, since it supports the polarized HE,;
mode, which has very low loss [27] and superior radiation
properties when launched from the open end of a wave-
guide [28]. If made flexible, the corrugated waveguide can
be formed into compact bends with low mode conversion
when propagating HE,;. As shown in Fig. 11, the HE, is
well separated in 8 from competing modes, such as TEy
and HE,,, over a wide range of corrugation depths.
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Fig. 12. Losses to TEy, HE,;, and HE,; in 90-degree H-plane bends
propagating HE;; in 1.094-in circular waveguide with an electrical
corrugation (slot) depth of 0.5 (A /4) at 60 GHz; L/R,=4 for the
hyperbolic secant curve.

The superiority of the hyperbolic secant curvature varia-
tion for a 90-degree H-plane bend propagating HE;; in
1.094-in-diameter waveguide is evident from Fig. 12. The
reason, evidently, is that the coupling parameter C in (11¢)
for this diameter and frequency is almost exactly 2 for
coupling from HE; to either TEy; or HE,; [29]. The mode

conversion loss predicted by (17) is then virtually zero,

independent of bend length.

The deviations from zero in the curve in Fig. 12 calcu-
lated from numerical integration of the coupled-mode
equations are caused by the truncation of the hyperbolic
secant variation (L/R, = 4 is assumed for all L in Fig. 12)
and by the need to consider simultaneous coupling to both
TE, and HE,,. For bend lengths less than 25 in, coupling
through HE,, to HE;; also becomes important. Neverthe-
less, the losses in Fig. 12 are much less than those predicted
by the approximate (perturbation) formula (22). For L = 32

Fig. 13. A 90-degree bend propagating HE;; in 1.094-

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-32, NO. 10, OCTOBER 1984

in, for example, the coupling parameter B is approximately
1, C=2, and the loss to either TE; or HE,, calculated
from (22) would be 2 dB.

A corrugated waveguide bend with a hyperbolic secant
curvature variation corresponding to the parameters in
Fig. 12 was fabricated with L =32 in for use in
electron—cyclotron heating on Princeton’s PLT and PDX
tokamaks [30] (Fig. 13). In this application, up to 200 kW
must be propagated around tight corners near the toka-
maks. The H-plane mode conversion for this bend mea-
sured at low power was less than 0.1 dB when propagating
HE,;, between 59 and 60 GHz. (HE,; launchers for this
experiment are described in {31].) Measured mode conver-
sion when the same bend was used in an E-plane config-
uration was also less than 0.1 dB. In that case, coupling to
TMg, replaces coupling to TEy [32]. The experimental
results apparently confirm the superiority of the hyperbolic
secant curvature variation for this application as indicated
theoretically by Fig, 12.

Because HE;; is separated so far from other modes in
AP over such a wide range of corrugation depths (see Fig.
11; B for TMy, is less than that for TE, for all corruga--
tion depths up to a quarter wavelength), it might be
expected that both E and H plane bends would have low
loss over a fairly large bandwidth, and this is demonstrated
theoretically in Fig. 14 from numerical integration of the
coupled-mode equations (5) for an H-plane bend. (The
theoretical E-plane loss is slightly less up to 70 GHz and
then slightly higher.) Only at the high frequencies do the
AB become too small for the denominator in (17) to
overcome the variations in the numerator.

The situation for propagation of TE) in corrugated
bends in entirely different. In that case, it is generally
disastrous to have corrugations near a quarter wavelength
deep, because energy is efficiently coupled through HE,,

in-diameter corrugated waveguide with hyperbolic secant curvature variation over a
32-in arc length. Ry =38 in.
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Fig. 14. Loss to TEy,, HE,,, and HE3; in a 90-degree hyperbolic secant
H-plane bend propagating HE,; in 1.094-in corrugated waveguide with
a mechanical corrugation depth of A /4 at 73 GHz and a corrugation
period twice the corrugation width; L/R,=4.

into HE,,, which becomes nearly degenerate with TE
[33] (AB = 0; See Fig. 11). The corrugations must also not
be too shallow, since HE,; itself then approaches degener-
acy with TE,;, becoming TM,; in smooth waveguide with
AB =0 (Fig. 11). A fairly narrow region of slot depth over
which there is low mode conversion then appears and the
bend lengths for which the mode conversion is acceptably
low become much longer than for bends propagating HE,;.

Numerical integration of the coupled mode equations for
TE, bends at 60 GHz in 1.094-in-diameter waveguide
showed that the cosine curvature variation is superior at
most corrugation depths to a hyperbolic secant variation
and also to the triangular variation, which behaves almost
identically to a cosine squared variation. Experimental
measurements on several bends confirmed this picture [30].

APPENDIX

To solve (1), we transform it to a differential equation
whose solutions are hypergeometric functions [34].! The
required transformation is easier to follow if we start from
the hypergeometric differential equation and work back to
(10). The general second-order hypergeometric equation
may be written as follows [35]:

(-0 )(Q—p))F(§)=¢(Q+0,)(Q+0,) F(§)

(A1)
where Q is the operator
2=gr (A2)
and p,, p;, 04, and o, are complex constants.
If we make the substitutions
E=—exp(+kz) (A3)
and
F[4(2)] = f(2)Gy(2) (A4)

An equation with certain similarities to (10) and describing the propa-
gation and reflection of obliquely incident electromagnetic waves in a
plane-stratified isotropic plasma has also been solved by this type of
transformation.
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then (A1) becomes

” (1 §s1) ,
Gol2 +k—F5= (1= f) ]GO
e f (r—&s1) kz("l ¢s,)
+[f+kf i—o "t Tamp % @

where the prime denotes differentiation with respect to z
and

(A6)
(A7)

At this point, we choose f(z) to have the special form

nN==—0-"0n,Kh=

$51=0,+05,85,=

P1P

0,0;.

Lzl = (-8 " a-H" ™7 (a8)
Recognizing from (A3) that
£/(1-£)= ——12—(1+tanh%) (A9)
and
¢/(1— 5)2 =— % sech? 525 (A10)

we then find that the first derivative terms in (AS) and (10)
can be made equal, provided that

Io—r= % +(AT/k) (Alla)

51— 89 = -;- —(AT/K). (A11b)

With the help of a partial fraction expansion involving
terms in (1—-§)™™, m=0,1,2, and again making use of
(A9) and (A10), we find that the terms multiplying G, in
(AS) and (10) can be made equal provided that

1

Z"oz - %r0r1+r2=0 (Allc)
1 1
Z(roz—s§)+§(sosl—r0r1)+(r2—s2)=0 (A11d)
and
1
Z(So —r)[(sg—r)+2(1+ 1 —5))] = _4|K|2/(kR0)2-

(Alle)

Through (A11), (A6), and (A7), we can now relate the
parameters in (Al) to those of our original differential (10),
thus essentially completing the transformation. Before we
can solve explicitly for p;, p,, 0;, and o,, however, we need
some more information, which we can obtain by examining
the form of the solutions to (Al).

The solutions to (Al) have the form of normal modes in

the limit of large |z|. Near £ = 0 (z = — o0), one solution to
(A1) has the form
Fy(z)= (_g)(4r2)p1F1(P1"'"1’1"1‘F 0y, 01— Py +15§)
(A12)

while another independent solution F; (£) can be obtained
by interchanging p, and p, in (A12). The hypergeometric
functions , F; are expressable as power series that reduce
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to the value unity in the limit of small argument. From
(A3), we then see that the leading term in (Al2) is
exp(— kp,z), which represents a normal mode if p, is
imaginary.

Similarly, we may write the solutions for | >1

Ff(¢)= (—5);°1F1(01+p1,01+92§
o —0+1;¢71). (A13)

_An interchange of o, with o, yields F;" (). Because of the
¢! argument, these functions now reduce to unity when §
approaches minus infinity (z — + o0). Again, from (A3) it
is evident that the leading term in (A13) has normal mode
form when o, is imaginary.

In view of (A4), (A8), and (A3), we thus find the
following possible limiting forms for G;, where we define

Go, = F*(8§)/f(§),i=1,2:

lim_Ga(2) = Jim F (8)/7(6) —exp [k 3 +01):]

(Al4a)
lim Gi(a) = lim B (8)/1(8) = ewp k(3 —o,)2]
(A14b)

lim ng(z)=$lnng;(£)/f($)

z—> +o0

= exp [k(fzg - oz)z]. (Aldc)

Since the coupling function ¢(z) from (8) approaches zero
for large |z|, we must pick the solutions so that G vanishes
[see (5a)]. Therefore, the exponents in (Al4a) and (Al4b)
must also vanish

% +p,=0 (A15)
2 —g=0. (A16)

In the usual mode conversion problems, one mode starts
with all the power. We take G to be this mode, and Gg;(z)
with unit amplitude then represents the solution at z = — c0.
There are no other waves present in this limit, since the
coupled mode equations (5) do not allow for reflections.
The amplitude of Gyj(z) at z= + co then represents the
transmission coefficient for G,. Because Gg,(z) has a non-
vanishing exponent at z = + 00, it cannot be part of the
solution for G, in that limit. In fact, we will see that the
exponent is negative and hence G, goes to zero as z goes
to infinity.

To find the transmission coefficient 7, we need to find
an analytic solution of (A1), valid for all &, that will reduce
to F{ for |§}<1 and to a linear combination of F;" and
F;+ for |€)>1. Such a solution can be found in terms of
Meijer’s G-functions, which are expressible as Barnes con-
tour integrals [36]. The desired solution to (A1) is

_ T-p—p) 1
F &) = Flort o) T(py + 0y) 27/

I'(py—w)I(0,+w)T (o, + w) w
-[L r(1-p,+w) (=&)"dw

(A17)
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where the contour L, goes from w= — joo to w =+ joo in
a manner such that all the poles of I'(p; — w) lie to the
right of the contour, and all the poles of I'(o, +w),i=1,2
lie to the left of the contour., I'(x) is the gamma function
of the complex argument x [20]. It is assumed that 1— g,
— p, is not a positive integer for m, n =1,2. The integral in
(A17) converges if [arg€é~'| < #. Notice from (A3) that
(A17) resembles a bilateral inverse Laplace transform for F
considered as a function of z,

To evaluate (A17) for |¢| <1, we may close the contour
L, in the right-half w-plane without affecting the value of
the solution. The evaluation of this closed contour integral
in terms of the residues of gamma functions yields the
infinite power series denoted by (A12). Similarly, we may
close the contour in the left-hand w-plane when |£]>1.
The coefficient of the power series denoted by (A13) is
then the transmission coefficient T, which we find to be

_I-p+ p)T (0, — o))
T(1—p,—0y)T(0, +py)

To find T explicitly in terms of the parameters of the
coupling function (8), we need now only solve (All) with
(A15) and (Al6) to obtain the quantities appearing in
(A18). It turns out that the p, and o, cannot all be specified
uniquely since we have an insufficient number of con-
straints, but T nevertheless is uniquely determined. Using
(Al5) and (Al16), and the definitions (A6) and (A7), we
find from (Alla) and (Al1b)

T

=Gy(+). (Al8)

(A19)

Similarly, from (Alle) we obtain another relation, which
when combined with (A19), yields

(o1 +0,) =+2|K|/(kR,) (A20)
and

(1= p,—0,) = F2|K|/(kRy). (A21)
Alternately adding and subtracting (A20) and (A21) and
combining the results, we find

1—p2—01=%—AI‘ F2iK|/(kR,) (A22a)
and

0+ =3 —AT£2[K|/(kR,).  (A22b)

The final result for T is, from (AlS8), (A19), and (A22),
regardless of whether the upper or lower signs are chosen
in (A22)
e I'%(1/2+ A— jB)
I(1/2+A—- jB+C)T(1/2+A4— jB~C)’
(A23)
Here, we have defined the normalized quantities 4, B, and
C as in (11).
In order that the residual solution Gj, vanish as z

approaches + oo, as discussed earlier, the real part of the
exponent in (Al4c) must be negative. From (A16), (A19),
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(12), and (6), this requires that

0<Re(%+A—jB)=%+A.' (A24)

Notice that this condition also ensures that T in (A23) has
no poles. In the usual cases of interest, Aa is negative
because the desired mode G; has lower loss than the
spurious mode G;. Then, (A24) is automatically satisfied.
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