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Hyperbolic Secant Coupling in
Overmoded Waveguide

J. L. DOANE, MEMBER, IEEE

.h~ract –This work presents a new solution of the coupled-mode

equations for a hyperbolic secant spatiaf variation of the coupfing between

two modes. An analytic expression is given for the transmission coefficient

for arbitrary complex differential propagation constant and coupling

strength. The expression is particular simple in the case when the dif-

ferential attenuation between the modes is negligible.

Design curves are presented in terms of normalized parameters. The
hyperbolic secant coupling may be truncated and still yield virtoafly the

same transmission as for infinite couping length. The required coupting
length is indicated by a comparison of the ideaf expression with the resolts

of numerical integration of the coupled-mode equations.
Hyperbolic secant coupfing can be particularly usefuf for the design of

short low-loss broad-band bends, twists, and mode-seleetive couplers in
overmoded wavegnide. Results of tests on %)-degree bends in reetangufar

and corrugated circular waveguide are consistent with the theory.-

1. INTRODUCTION

A LTHOUGH the coupled-wave equations have a de-

ceptively simple form, few analytical solutions have

been found. A simple solution for arbitrary coupling varia-

tion exists when reflections may be neglected and when the

two coupled modes are degenerate (that is, have the same

propagation constants) [1]. When reflections are negligible

and the coupling is constant, Miller [2] and Smith [3] have

derived solutions for the case of constant and linearly

tapered differences in propagation factors, respectively.

For the case of arbitrary coupling variation and constant

difference in propagation factors, Rowe [1] has used per-

turbation theory to derive solutions in the form of Fourier

integrals, and Waldron [4] has developed solutions for

slowly varying coupling based on Miller’s constant cou-

pling solution [2]. Miller’s solution [2] has also been used as

a basis for treating periodic coupling [5], [6] and random

coupling [7].

In waveguide tapers, the coupling and propagation fac-

tors vary simultaneously. Solymar [8], [9] has developed

estimates for the mode conversion in tapers with a linear

profile, Unger [10] has developed a synthesis technique for

broad-band tapers with low mode conversion using per-

turbation theory, and other approaches are described by

Sporleder and Unger [11]. The case of a parabolic taper
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profile was treated in [12], and analytical solutions for this

case were derived in [11] and [13].

Reflections have been considered in solutions for wave-

guides and transmission lines in which the coupled modes

are not far from cutoff or the impedance is varying signifi-

cantly. Solutions for these cases, and where forward mode

conversion is impossible or unimportant, have been ob-

tained by Hecken [14] (and earlier references cited therein)

and Waldron [15] using formalisms similar to those in [10]

and [4], respectively. A solution for both mode conversion

and reflections in a coupler with degenerate modes and

coupling with a Gaussian variation is described in [16].

This work presents a new analytic expression for the

transmission coefficient for the amplitude of a mode ini-

tially having all the power and whose coupling with another

mode has a hyperbolic secant variation. This expression is

valid for arbitrary constant differential phase and attenua-

tion factors when reflections are negligible. It reduces in

the limit of small coupling to expressions derivable from

perturbation theory for the same coupling variation, and in

general predicts higher transmission (less mode conversion)

than the perturbation theoretical expressions. In the case of

negligible differential attenuation between modes, the exact

expression for the power lost from the initial mode is

separable into a product of the power that would be lost

with zero differential phase constant and the square of a

hyperbolic secant function of the differential phase con-

stant.

Aside from its theoretical interest as a new analytic

solution, the solution for hyperbolic secant coupling varia-

tion can be used to-design short low-loss bends and twists

in overmoded waveguide. Since the mode conversion is a

monotonic function of the differential phase constant when

the differential attenuation is negligible, the design of

components with hyperbolic secant coupling is relatively

simple. When a relatively broad-band component is re-
quired, the hyperbolic secant coupling variation also fre-

quently provides lower mode conversion for a given length

than other common coupling variations (constant coupling,
linearly tapered or triangular coupling, cosine coupling,

etc).

In the next section, we set up the coupled-wave equa-

tions describing the problem. The properties of the solu-

tion, derived in the Appendix, are discussed in Section III.

Finally, Section IV presents some theoretical and experi-

mental results for two examples of 90-degree bends in
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overmoded waveguide with a hyperbolic secant curvature

variation: one for TEIO in rectangular waveguide, and

another for HEII in corrugated circular waveguide.

II. THE COUPLED-MODE EQUATIONS

The coupled-mode equations for modes propagating

along the waveguide axis (z-direction) are [17], [18]

-#;(z)= –rml; (z)+ z K;;l;(z)
n+m

+ ~ K;;ln- (z)

n#m

:W)= +rrn~ii (z)+ z K;c(z)
n~m

+ ~ K;; In-(z) (1)
n#m

where I; and l; are the. complex amplitudes of the

forward and reverse traveling modes, respectively. These

equations may be derived from Maxwell’s equations and

are exact, provided that the propagation factors r~ = am +

j3~ are independent of z [19]. (The rm are functions of z in
tapers, for example, where the size of the cross section is

changing with z.)

Furthermore, in many cases of interest, the desired mode

of propagation (10) is far from cutoff. The only significant

coupling is to modes that are also far from cutoff, and

hence have propagation constants close to that of l.. For

such modes, the coupling coefficients K~~ and Kj~ are

ne~gible [19], so that reflected power is not important.

(The coefficients may not be negligible for coupling to

modes close to cutoff, but then their phase constants & are

much different from PO and no significant coupling occurs

unless there is a strong discontinuity in the coupling.)

Neglecting reflected modes in (l), therefore, and consid-

ering only two modes at a time

~((2)=– ro~o(z)+~olq(z)’

~[(2)=– rl~l(z)+~lo~o(z) (2)

where the prime denotes differentiation with respect to z,

and we have dropped the + superscripts. In order to have

power conservation when the attenuation constants aO and

al are negligible, then, for modes traveling in the same

direction, we must have

K1o=– K&. (3)

Ordinarily, the coupling factors KIO can be factored into

the product of a coupling coefficient K derivable from

Maxwell’s equations and a geometric distortion function

C(z) such as curvature, for example. If the distortion were

abnormally large, such as in bends with extremely large

curvature, then terms that are nonlinear in C(Z) would also
have to be included in KIO. The simple linear term, how-

ever, seems to be adequate to account for the data in all

practical cases, in which the mode conversion is purposely

small.

To simplify the form of (2) to concentrate on mode

conversion effects, we factor out the propagation factors of
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Fig. 1. Hyperbolic secant coupling.

the uncoupled modes in ideal waveguide

10=exp(– I’Oz)GO

ll=exp(–rlz)Gl

and then (2) becomes

G~(.z)= Kc(z) eArzG,(z)

Gf(z)=– K*c(z)e-ArzGo(z)

where

AI’= Aa+jA#= (aO-al)+j(~O-~l)

and, as discussed in the preceding paragraph

KO1=KC(Z).

(4)

(5a)

(5b)

(6) ,

(7)

In the case of curvature, K is imaginary [19] and z is the

arc length along the waveguide centerline.

Now, we take c(z) to have the special form

c(z) = R~lsech(kz/2) (8)

with z = O at the center of the coupling region where

c(0) = R; 1. A plot of the hyperbolic secant function

sech( kz/2) is presented in Fig. 1. To solve (5) with C(Z) as

in (8), we first differentiate (5a), substitute (5b) for G~, and

use (5a) itself to write GI in terms of GO to obtain

“$’-[-+ArlG’+’K’2c‘9)
This equation can be used with the coupling function c(z)

in (8), since C(z) in (8) is never exactly zero. Substituting

(8) into (9), we obtain

+(lK12/Ro)2sech2
()

~ Go= O. (10)

A similar equation may be obtained for GI by changing

the sign of Ar. The solution to (10) is developed in the

Appendix.
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HI. DISCUSSION OF SOLUTION

A. General

In discussing the solution obtained in the Appendix, it is

convenient to introduce the following dimensionless quan-

tities related to the differential attenuation, propagation

constant, and the coupling, respectively:

A = – AaROO/2~ (ha)

B = A~R06/2v (llb)

Here, we have also defined

fq’w@fz=w(%) (12)
—m

making use of (8).

In the case where c(z) represents the curvature in a

bend, 6 in (32) is simply the total bend angle, and RO from

(8) is the radius of curvature at the center of the bend

z = O. In the general case, define

l/R(z) = c(z)= (dO\dz) = (l/RO)sech(rz/( ROO))

(13)

using (8) and (12), where

I/RO = (ci6/ciZ)z=0. (14)

The case of a twist of total angle d in rectangular wave-

guide, for example, can easily be treated with this notation,
In that case, l/R(z) is the torsion of the twist.

For convenience, we repeat here the expression for the

transmission coefficient T derived in the Appendix (A23).

r(x) is the gamma (factorial) function of the complex

argument x [20].

r2(l/2+ A– jl?)

‘=1’(1/2+ A-jB+C)r(l/’2+ A-jB- C)”
(15)

In the case of zero differential attenuation (Aa = O = A),

a simple exact expression can be found from (15) for the

transited power [T]z. Write IT I2 = T *T, note that

T *(x*)= r(x) for an complex x, and use the identity

‘(++x)r(*-x)=m/cosmx(16)

Expanding the resulting products of cosines using ordinary

trigonometric identities, we find that the result separates

into factors containing B alone and C alone

1– IT12 = sin2(~C)/cosh2 (mB), Aa = O. (17)

Identifying ITl = IGO( + CO)I from (A18) and using the fact

that

IG012+IG112 =1, Aa=O (18)

which follows easily from (5), we see that

IG1(+co)12=1-IT12. (19)

Hence, [17) represents the power coupled from GO to G1.

The behavior of the transmitted power ITI 2 is depicted

in Fig. 2 as a function of C for various B. Notice from (17)

that ITI is periodic in C, with unity period. In the case of
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Fig. 2. Transmitted power as a function of the normalized total cou-
pling C when Aa = O.
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Fig. 3. Transmitted power as a function of the normalized propagation
constant when Aa = O.

degenerate modes, (A8 = O = B), (17) becomes

l–lT12=sin2(~C), Aa, Afi =0, (20)

This result can be obtained directly from the coupled-wave

equations (5) using definition (llc) for C, and holds for

arbitrary coupling c(z). The interesting feature of (17) is

that the factor (20) remains intact, and the denominator is

independent of C. This result contrasts with the solution in

the case of constant coupling [2], where a factor containing

B alone cannot be separated out, in general.

In the present case, progressively increasing B from O

monotonically decreases the amount of power coupled to

G1. Fig. 3 shows that, when B reaches unity or more, very
little power is coupled to Gl, and the transmitted power

IT12 is virtually unity, regardless of C.

Mode-selective couplers may be used to couple power

from a certain mode in one waveguide through holes or

slots to a mode in another waveguide. Ordinarily, these

modes have the same propagation constant, so that A~ = O

and (20) may be used to calculate the coupled power. If

one or both coupled waveguides is overmoded, coupling to

or from an undesired mode with nonzero A~ can be

calculated from (17), provided the coupling variation fol-

lows the hyperbolic secant form defined in (13). This

coupling variation can be useful when a broad-band mode-

selective coupler must be designed.
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B. Comparison with Perturbation Theory

When C/B = 21K l/( A~RO) is small and A = O, per-

turbation theory may be used to find an estimate for IT 12.

Small C/B is equivalent to a small amount of coupling in

one beat-wavelength, 2Tr/A/3. The perturbation solution for

arbitrary c(z) is [19]

, IJ
2

1–IT12= ‘me-jAP.lKlc(z) dZ , Aa = O (21)
–w

which in the present case becomes, using (8) and (11)

1– lT12 = (irC)2/cosh2 (rB), Aa=O, (22)

Notice that this, in general, overestimates the power cou-

pled to Gl, but reduces to the exact result (17) when

C = IK 10/T is small. For comparison, the corresponding

coupled power in a bend of constant radius RO when

C <B, using (llb) to define B, is [2]

1– lT12 = (rC)2[SiU(mB)/( mB)]2. (23)

C. Added Heat Loss

No simple trigonometric formula can be derived for IT12

in the general case when A/3 = O, but Aa # O. The curves in

Fig, 4 were calculated directly from (15) using a computer

program for numerical evaluation of the gamma functions

[21]. These results were checked against simple formulas

which can be derived for the cases A = 0,5 and 1.0 using

(16). Notice that, for ,small total coupling C, increasing A

from zero increases the transmitted power by breaking the

degeneracy A~ = O between the two modes in a manner

similar to Fig. 2. For large ‘C, however, the power never

returns competely to GO because of the large damping in

the coupled mode G1.

In most practical cases, the differential attenuation is

small, and its effect is a small correction to IT 12. In such

cases, it is convenient to define an “added heat loss”

(A.H.L.) as

A,H,L, - in
T(O, B, C)

T(A, B,C)
(24)

where the transmission coefficient T is considered as a

function of the three normalized parameters of (11).

When B is large and both A and C are small, an

estimate of A.H.L. can be obtained by expanding the

gamma functions in (15) using Stirling’s approximation.

The result is

A,H.L. = A(C/B)2, (25)

This result agrees with the following formula for A.H.L.

that can be derived from perturbation theory [22], whenever

the loss considered as a function of B is maximum near

B = O and is small for all IBI greater than some reasonably

small fraction of the actual B

A.H.L. =&j~mlK12c2(z) dz. (26)
w

Equation (25) can be obtained by performing the integra-

tion in (26) using (8) and the definition of (11).
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Fig. 4. Transmitted power as a function of C when B = O.
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Fig. 6. Ratio of A,H.L. to A as a function of B for various C and A.

A comparison between the approximate expression (25)

for A.H.L. and the exact expression (24) evaluated numeri-

cally is depicted in Fig. 5 for relatively small coupling C.

As in the case of zero Aa, the perturbation results again

overestimate the loss, but reduce to the exact result for

small (C/B)2.

Fig. 6 reproduces the exact results of Fig. 5 and com-

pares these with additional results for larger C and A.

Notice that the value of A does not affect the added heat

loss to A ratio when C is an integer. From (17), it can be
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seen that this corresponds to the case of zero transmission

loss for arbitrary B when A = O. When C takes on half-

integral values, on the other hand, the loss from (17) is

maximum. In this case, increasing A for very small B

tends to decrease the degeneracy between modes and also

to decrease the transmission loss (see the discussion of Fig.

4). In such cases, the “added heat loss” can even become

negative for larger A, as Fig. 6 shows.

D. Truncation of the Coupling

In practice, it is of course necessary to truncate the

hyperbolic secant coupling function c(z) at some finite

length. To achieve the same total coupling (which would be

the bend angle for curvature coupling, for example), it is

necessary to scale the value of f3 used in the coupling

function (13). If we define L as the total coupling length,

and d, as the scaled coupling parameter, then we require

that

J+m@~.=*J’2 sech(rz/ROf3~) dz = 6. (27)
—03

Evaluation of the integral in (27) yields an implicit expres-

sion for O.

(2e/m)arctan(sinh~ti)=e ’28)

When L/( ROdJ) is large, which is usually required for low

loss, we may expand the functions in (28) in terms of

simple exponential. Expanding the result about 6, = 13,we

find

8 1-!Z (29)

d - l-l/( ~eX-x)

where

rL

‘=? R09”
(30)

Fig. 7 contains a plot of (29) compared with the exact

result obtained numerically for the case 0 = 7r/2. When

L/RO >2.5, which is usually required in practice for low

loss, the approximate expression k very good,

In Figs. 8 and 9, we provide a basis for choosing the

truncated coupling length L, These figures show the situa-

tion for 0 = 7r/2, and A = O, B = 0.5, and lC/Bl = 5 or 6,

For both integral and half-integral C, which correspond to

minimum and maximum loss at L ~ co, respectively, L/R ~
must reach about 6 before the loss (coupled power) with

truncated coupling approaches the loss for infinite cou-

pling (with no truncation). The actual loss in these figures

was calculated numerically from the coupled-mode equa-

tions assuming a sharp truncation in the coupling, so that

c(z) k given by (8) for Izl < L/2, and c(z)= 0 for lzl >

L/2. The straight lines in the figures were calculated from

(17).

The actual value of (L/RO@) required for satisfactory

results depends on the ratio lC/B 1.For small values of this

ratio, the coupling at the truncation points z = + L/2 is

small and does not strongly affect the overall loss. Hence,
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Fig. 7. Approximate (29) and exact ratios of the scaled and desired
angles 0, and 9 as a function of the normalized coupling length.
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Fig. 8. Transmitted power versus normalized coupling length for O=

~/’2, ~ = 0, B = 0.5, ~d C = 2.5. The straight line is the value for
infinite coupling length obtained from (17).
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Fig. 9. Transmitted power versus normalized coupling length for d =
7r/2, A = O, B = 0.5, and C = 3.0, The straight line is the value ob-
tained from (17).

L/(ROO) can be decreased to make a shorter coupling

section. For larger IC/Bl, the coupling C(z) must be re-

duced to a small value before truncation, and this implies

larger L/( ROO).

If the truncation is not abrupt, on the other hand, the

hyperbolic secant couulin~ lenmh mav be reduced slightly.
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In general, the strength of the coupling between modes at

the truncation region is roughly inversely proportional to

the order of the lowest order derivative in the coupling

function that is discontinuous, That is, a parabolic taper to

zero in C(z) for Iz I > L/2 is better than a linear taper,

which in turn is better than an abrupt truncation, Integra-

tion by parts of the integral in the perturbation solution

(21) quickly shows this to be true, protided that the length

of the taper exceeds a beat-wavelength 27r/A/3. In physi-

cally practical situations involving hyperbolic secant cou-

pling such as in bends or twists, a gradual truncation is

actually more natural than an abrupt one.

IV, APPLICATION TO THE DESIGN OF BENDS

A. Rectangular Waveguide

Overmoded rectangular waveguides are commonly used

for the propagation of low-level signals over several meters

at millimeter wavelengths, because the losses are lower

than in dominant-mode waveguide and because the TEIO

mode can easily be launched in the larger overmoded

waveguide by a taper. To negotiate bends in the H-plane, a

quasi-optical miter bend is usually fairly satisfactory, with

mode conversion proportional to (a/X) – 3/2, where a is

the length of the wall perpendicular to the E-field [23], [24].

For example, at 140 GHz in WR28 waveguide (0.280X

0.140 in), the mode conversion in an H-plane 90-degree

miter is only 0.3 dB. An E-plane miter, however, would

have 1.5 dB of mode conversion loss under these condi-

tions, and the loss varies only as (b/A)- 1/2, where b is the

length of the wall parallel to E [23], [24].

As an alternative to the E-plane miter, a gradual E-plane

bend with hyperbolic secant curvature variation was con-

sidered. The coupling is from TEIO to the TE1l/TM1l

degenerate pair. The total coupling coefficient is given in

[25]; when TE1l/TMll is well above cutoff, K = j(4fi/T)

(b/h) [24]. This coupling coefficient is about the same as

for TEIO to TE20 coupling in H-plane bends K = j(32/9w)

(a/A), Fortunately, however, the total mode conversion in

gradual E-plane bends is smaller than in corresponding

H-plane bends because the A/3 for the former is larger.

The mode conversion loss in a 6-in E-plane bend in

WR28 is shown in Fig. 10. In accordance with the theory,

the mode conversion measured at 140 GHz was less than

the experimental error, about 0.1 dB. The mode conversion

predicted by (17) differs from the result of numerical

integration in Fig. 10 at the higher frequencies due to the

truncation of the hyperbolic secant curvature at L/R ~ = x

= 4 [see (29)], and the fact that the coupling factor C in

(llc) increases to 3.15 at 300 GHz, while B in (llb) drops

to 0.6. Figs. 8 and 9 indicate the discrepancy for similar

conditions. In any case, the mode conversion loss for the

truncated hyperbolic secant curvature is generally less than

that for the a linearly tapered, or triangular, curvature

variation suggested in [26]. Not shown in Fig, 10 are the

loss for a cosine curvature variation (with zero curvature at

both bend ends) [25], almost identical to that of the trian-

gular curvature, and the loss for constant curvature [2],

which has nulls at certain frequencies but generally has the
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to TE1l/TMll with hyperbolic secant curvature calculated from (15) or
(17); (b) Same as (a), but calculated from numerical integration of the
coupled wave equations (5) with the curvature truncated at L\R ~ ==4;
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integration of (5).
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gated circular waveguide as a function of effective slot depth at 60 G1lz.

highest mode conversion. The ohmic loss for ideal copper

conductivity in the 6-in bend increases from 0.09 dB at 1100

GHz to 0.13 dB at 300 GHz for the TEIO mode. The effect

of the differential attenuation Aa on the mode conversion

is negligible in this case, since a direct computation of (15)

showed virtually no difference from (17).

B. Corrugated Circular Waveguide

For very low-loss and high-power transmission at mMi-

meter wavelengths, it is necessary to use highly overmoded

circular waveguide. Corrugated circular waveguides are

particular convenient, since it supports the polarized HEII
mode, which has very low loss [27] and superior radiation

properties when launched from the open end of a wave-

guide [28]. If made flexible, the corrugated waveguide can
be formed into compact bends with low mode conversion

when propagating HE II. As shown in Fig. 11, the HE1l is

well separated in ~ from competing modes, such as TEO1

and HE21, over a wide range of corrugation depths.
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Fig. 12. Losses to TEOI, HE21, and HE31 in 90-degree H-plane bends
propagating HEII in 1.094-in circular waveguide with an electrical
corrugation (slot) depth of 0.5 (A/4) at 60 GHz; L/R ~ = 4 for the
hyperbolic secant curve.

The superiority of the hyperbolic secant curvature varia-

tion for a 90-degree H-plane bend propagating HEII in

l.094-in-diameter waveguide is evident from Fig. 12. The

reason, evidently, is that the coupling parameter C in (llc)

for this diameter and frequency is almost exactly 2 for

coupling from HEII to either TEOI or HEZI [29]. The mode

conversion loss predicted by (17) is then virtually zero,

independent of bend length.

The deviations from zero in the curve in Fig. 12 calcu-

lated from numerical integration of the coupled-mode

equations are caused by the truncation of the hyperbolic

secant variation (L/RO = 4 is assumed for all L in Fig. 12)

and by the need to consider simultaneous coupling to both

TEOI and HEZI. For bend lengths less than 25 in, coupling

through HE21 to HE31 also becomes important. Neverthe-

less, the losses in Fig. 12 are much less than those predicted

by the approximate (perturbation) formula (22). For L = 32

in, for example, the coupling parameter B is approximately

1, C =2, and the loss to either TEOI or HEZI calculated

from (22) would be 2 dB.

A corrugated waveguide bend with a hyperbolic secant

curvature variation corresponding to the parameters in

Fig. 12 was fabricated with L = 32 in for use in

electron–cyclotron heating on Princeton’s PLT and PDX

tokamaks [30] (Fig. 13). In this application, up to 200 kW

must be propagated around tight corners near the toka-

maks. The H-plane mode conversion for this bend mea-

sured at low power was less than 0.1 dB when propagating

HEII, between 59 and 60 GHz. (HEII launchers for this

experiment are described in [31],) Measured mode conver-

sion when the same bend was used in an E-plane config-

uration was also less than 0.1 dB, In that case, coupling to

TM02 replaces coupling to TEOI [32]. The experimental

results apparently confirm the superiority of the hyperbolic

secant curvature variation for this application as indicated

theoretically by Fig. 12.

Because HEII is separated so far from other modes in

A~ over such a wide range of corrugation depths (see Fig.

11; B for TMOZ is less than that for TEOI for all corruga-

tion depths up to a quarter wavelength), it might be

expected that both E and H plane bends would have low

loss over a fairly large bandwidth, and this is demonstrated

theoretically in Fig. 14 from numerical integration of the

coupled-mode equations (5) for an H-plane bend. (The

theoretical E-plane loss is slightly less up to 70 GHz and

then slightly higher.) Only at the high frequencies do the

AD become too small for the denominator in (17) to

overcome the variations in the numerator.

The situation for propagation of TEOI in corrugated

bends in entirely different, In that case, it is generally

disastrous to have corrugations near a quarter wavelength

deep, because energy is efficiently coupled through HEII

Fig. 13. A 90-degree bend propagating HEII in 1.094-in-diameter corrugated waveguide with hyperbolic secant curvature variation over a

32-in arc length. R o = 8 in.
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Fig. 14. Loss to ‘Mlol, HEII, and HE31 in a 90-degree hyperbolic secant

\ H-plane bend propagating HEII in 1.094-in corrugated waveguide with
a mechanical corrugation depth of A/4 at 73 GHz and a corrugation
period twice the corrugation width; L/RO = 4.

into HEZI, which becomes nearly degenerate with TEOI

[33] (AB = O; See Fig. 11), The corrugations must also not

be too shallow, since HEII itself then approaches degener-

acy with TEOl, becoming TMII in smooth waveguide with

AC= O (Fig. 11). A fairly narrow region of slot depth over

which there is low mode conversion then appears and the

bend lengths for which the mode conversion is acceptably

low become much longer than for bends propagating HEII.

Numerical integration of the coupled mode equations for

TEOI bends at 60 GHz in l.094-in-diameter waveguide

showed that the cosine curvature variation is superior at

most corrugation depths to a hyperbolic secant variation

and also to the triangular variation, which behaves almost

identically to a cosine squared variation. Experimental

measurements on several bends confirmed this picture [30].

APPENDIX

To solve (l), we transform it to a differential equation

whose solutions are hypergeometric functions [34].1 The

required transformation is easier to follow if we start from

the hypergeometric differential equation and work back to

(10). The general second-order hypergeometric equation

may be written as follows [35]:

(f2-pJ(sl- p2)F(g) =&( Q+iJJ(fl+a2)F(.$)

(Al)

where O is the operator

(A2)

and PI, Pz, al, and t72 are complex constants,

If we make the substitutions

~=-exp(+kz) (A3)

and

F[~(z)] =$( Z) GO(Z) (A4)

then (Al) becomes

[
G;’ 22+k(r1–$s1)

f 1(1-f) ‘6

[ 1+~+kJ(rl-&)+k’(rl-gs’)~.~A5)
f f (1-$) (1-g) L

where the prime denotes differentiation with respect tc) z

and

rl=–pl–p2, r2=p1p2 (A6)

s~=ul+u’, sz=cqo’, (AL7)

At this point, we choose f (z) to have the special form

f [z(g)]= (-g) -r”’’’(gy r”rs”)””’”. (},8)

Recognizing from (A3) that

($/(1–$)=–~ l+tanh~
)

(A9)

and

&/(1 – t)’= - ~ sech’ ~ (AI1O)

we then find that the first derivative terms in (A5) and (10)

can be made equal, provided that

ro–rl=~+(Ar//c) (All~a)

sl–sO=; –(Ar/k). (Allb)

With the help of a partial fraction expansion involving

terms in (1 – ~)-m, m = 0,1,2, and again making use of

(A9) and (A1O), we find that the terms multiplying GO in

(A5) and (10) can be made equal provided that

11
—r2– —ror1+rz=0
4’J 2

(Alllc)

+(r:-.’ +1
O) ~(~o~l-r,r,)+(r2-s2)=0 (And)

and

*(so -rl)[(so -ro)+2(l+r1-sl)] = -41 K12/(kRo)2.

(Alle)

Through (All), (A6), and (A7), we can now relate the

parameters in (Al) to those of our original differential (10),

thus essentially completing the transformation. Before we
can solve explicitly for pl, Pz, U1, and 02, however, we need

some more information, which we can obtain by examining

the form of the solutions to (Al).
The solutions to (Al) have the form of normal modes in

the limit of large Iz [. Near $ = O (z = – m), one solution to

(Al) has the form

F;(Z) =(–$)$;’FI(PI +UI, PI+ U’; P1– P2+1:$)

(A12)

?4n equation with certain similarities to (10) and describing the propa- while another independent solution F2” (t) can be obtained
gation and reflection of obliquely incident electromagnetic waves in a
plane-stratified isotropic plasma has also been solved by this type of by interchanging pl and p2 in (A12). The hypergeometric

transformation. functions ‘ F1 are expressable as power series that reduce
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to the value unity in the limit of small argument. From

(A3), we then see that the leading term in (A12) is

exp ( – kplz ), which represents a normal mode if PI is

imaginary.

Similarly, we may write the solutions for ICI> 1

F:(g) =(–4); ”’F1(ul+pl, u1+p2;

U1–uz+l; f-l). (A13)

. An interchange of UI with Uz yields F~ ($). Because of the

~-’ argument, these functions now reduce to unity when t

approaches minus infinity (z + + co). Again, from (A3) it

is evident that the leading term in (A13) has normal mode

form when UI is imaginary.

In view of (A4), (A8), and (A3), we thus find the

following possible limiting forms for GO, where we define

G; = ~.f($)/~($), i =1,2:

lim G=(z)= liliOFI(f)/f(&) =exp[k(~ + pl)z]
z-—-cc

(A14a)

(A14b)

lim G~(z) = ~~rn~F..($)/~(f)
Z++’x

‘=$(++1 ‘A14C)
Since the coupling function c(z) from (8) approaches zero

for large Izl, we must pick the solutions so that G; vanishes

[see (5a)]. Therefore, the exponents in (A14a) and (A14b)

must also vanish

;+ P1=O (A15)

so

_Z–
01 = o. (A16)

In the usual mode conversion problems, one mode starts

with all the power. We take GO to be this mode, and G;(z)

with unit amplitude then represents the solution at z = – co.

There are no other waves present in this limit, since the

coupled mode equations (5) do not allow for reflections.

The amplitude of G~(z) at z = + co then represents the

transmission coefficient for GO. Because G~ ( z ) has a non-

vanishing exponent at z = + co, it cannot be part of the

solution for GO in that limit. In fact, we will see that the

exponent is negative and hence G~z goes to zero as z goes

to infinity.

To find the transmission coefficient T, we need to find

an analytic solution of (Al), valid for all & that will reduce

to F1- for I.$1<1 and to a linear combination of F~ and

F: for ICI> 1. Such a solution can be found in terms of

Meijer’s G-functions, which are expressible as Barnes con-

tour integrals [36]. The desired solution to (Al) is

F(t) =
r(l–pl–p2) 1

r(pl+O1)r(pl +02) 2TJ

“J

r(pl–w)r(ul +w)r(u2+w)

r(l–p2+~)
(-t)”>dw

L,

(A17)

where the contour LC goes from w = – jce to w = + jco in

a manner such that all the poles of r(pl – w) lie to the

right of the contour, and all the poles of r(u~ + w), i =1,2

lie to the left of the contour. r(x) is the gamma function

of the complex argument x [20], It is assumed that 1 – UM

– P. is not a positive in@er for m, ~ =1,2. The integral in
(A17) converges if Iarg &-ll < m. Notice from (A3) that

(A17) resembles a bilateral inverse Laplace transform for F

considered as a function of z,

To evaluate (A17) for lfl <1, we may close the contour

LC in the right-half w-plane without affecting the value of

the solution. The evaluation of this closed contour integral

in terms of the residues of gamma functions yields the

infinite power series denoted by (A12). Similarly, we may

close the contour in the left-hand w-plane when 1.$1>1,

The coefficient of the power series denoted by (A13) is

then the transmission coefficient T, which we find to be

T= r(l–p2+pJr(02 -01)

r(l–p2–01)r(02+p1)
=Go(+ 03). (A18)

To find T explicitly in terms of the parameters of the

coupling function (8), we need now only solve (Al 1) with

(A15) and (A16) to obtain the quantities appearing in

(A18). It turns out that the p, and u, cannot all be specified

uniquely since we have an insufficient number of con-

straints, but T nevertheless is uniquely determined. Using

(A15) and (A16), and the definitions (A6) and (A7), we

find from (Alla) and (Allb)

1 Ar
02–u1=3–~=1–p2+p1. (A19)

Similarly, from (Alle) we obtain another relation, which

when combined with (A19), yields

(ul+pl) =+21 K]/(kRO) (A20)

and

(1-p2-u2) =T21Kl/(kRO). (A21)

Alternately adding and subtracting (A20) and (A21) and

combining the results, we find

l–p2–ul= ;–Ar+21Kl/(k~o) (A22a)

and

uz+pl=& AI’t21Kl/(kRo). (A22b)

The final result for T is, from (A18), (A19), and (A22),

regardless of whether the upper or lower signs are chosen

in (A22)

I’2(1/2+A– jl?)

‘=1’(1/2+ A-jB+C)17(l/2+ A-jB- C)”

(A23)

Here, we have defined the normalized quantities A, B, and

C as in (11).

In order that the residual solution GA vanish as z

approaches + m, as discussed earlier, the real part of the

exponent in (A14c) must be negative. From (A16), (A19),
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(12), and (6), this requires that [22]

( )O<Re ~+ A–jB =~+A. (A24) [23]

Notice that this condition also ensures that T in (A23) has

no poles. In the usual cases of interest, Aa is negative [24]

because the desired mode GO has lower loss than the

spurious mode G1. Then, (A24) is automatically satisfied. [25]
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